
Prof Chase Beisel
About
Chase Beisel received his bachelors and doctoral degrees in chemical engineering, although he always maintained an interest in engineering biomolecules and biological systems. His doctoral work at the California Institute of Technology (Pasadena, California, USA) with Dr. Christina Smolke introduced him to the concept of RNA engineering. He then completed a two-year postdoctoral fellowship at the National Institutes of Health (Bethesda, Maryland, USA) under the direction of Dr. Gisela Storz exploring the natural properties of RNA regulators. He then began his faculty position in the department of chemical and biomolecular engineering at North Carolina State University (Raleigh, North Carolina, USA) in 2011 pursuing RNA-guided immune systems called CRISPR-Cas systems. He was promoted to Associate Professor with Tenure shortly before transitioning to the HIRI in 2018, where he focuses on applying RNA engineering to better understand, diagnose, and treat infectious disease.
His accomplishments have garnered consistent recognition, starting with graduate fellowships from the National Science Foundation and Department of Defense and a postdoctoral fellowship through the Life Science Research Foundation. Later, his independent research program has also been recognized with the CAREER Award from the US National Science Foundation, the Camille Dreyfus Teacher-Scholar Award, the Biotechnology & Bioengineering Daniel I.C. Wang Young Investigator Award, and the Bay Area Lyme Foundation Emerging Leader Award.
2023
Shortened CRISPR-Cas9 arrays enable multiplexed gene targeting in bacteria from a smaller DNA footprint
Gawlitt S, Liao C, Achmedov T, Beisel CL (2023)
RNA Biology 20 (1): 666-680DOI: 10.1080/15476286.2023.2247247
For the CRISPR Fan(zor)atics: RNA-guided DNA endonucleases discovered in eukaryotes
Patinios C, Beisel CL (2023)
Molecular Cell 83 (17): 3046-3048DOI: 10.1016/j.molcel.2023.08.019
A predicted CRISPR-mediated symbiosis between uncultivated archaea
Esser SP, Rahlff J, Zhao W, Predl M, Plewka J, Sures K, Wimmer F, Lee J, Adam PS, McGonigle J, …, Zhang Y, Probst AJ (2023)
Nature Microbiology 8 (9): 1619-1633DOI: 10.1038/s41564-023-01439-2
Optimized metrics for orthogonal combinatorial CRISPR screens
Cetin R, Wegner M, Luwisch L, Saud S, Achmedov T, Süsser S, Vera-Guapi A, Müller K, Matthess Y, Quandt E, …, Beisel CL, Kaulich M (2023)
Scientific Reports 13 (1): 7405DOI: 10.1038/s41598-023-34597-8
Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria
Collias D, Vialetto E, Yu J, Co K, Almási ÉDH, Rüttiger AS, Achmedov T, Strowig T, Beisel CL (2023)
Nature Communications 14 (1): 680DOI: 10.1038/s41467-023-36283-9
RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2
Bravo JPK, Hallmark T, Naegle B, Beisel CL, Jackson RN, Taylor DW (2023)
Nature 613 (7944): 582-587DOI: 10.1038/s41586-022-05560-w
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA
Dmytrenko O, Neumann GC, Hallmark T, Keiser DJ, Crowley VM, Vialetto E, Mougiakos I, Wandera KG, Domgaard H, Weber J, …, Jackson RN, Beisel CL (2023)
Nature 613 (7944): 588-594DOI: 10.1038/s41586-022-05559-3
RNA recording in single bacterial cells using reprogrammed tracrRNAs
Jiao C, Reckstadt C, König F, Homberger C, Yu J, Vogel J, Westermann AJ, Sharma CM, Beisel CL (2023)
Nature Biotechnology 41 (8): 1107-1116DOI: 10.1038/s41587-022-01604-8
2022
The miniature CRISPR-Cas12m effector binds DNA to block transcription
Wu WY, Mohanraju P, Liao C, Adiego-Pérez B, Creutzburg SCA, Makarova KS, Keessen K, Lindeboom TA, Khan TS, Prinsen S, …, Beisel CL, van der Oost J (2022)
Molecular Cell 82 (23): 4487-4502.e7DOI: 10.1016/j.molcel.2022.11.003
Cell-Free Protein Synthesis from Exonuclease-Deficient Cellular Extracts Utilizing Linear DNA Templates
Sabeti Azad M, Cardoso Batista A, Faulon JL, Beisel CL, Bonnet J, Kushwaha M (2022)
Journal of Visualized Experiments (186): e64236DOI: 10.3791/64236
Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases
Wandera KG, Alkhnbashi OS, Bassett HVI, Mitrofanov A, Hauns S, Migur A, Backofen R, Beisel CL (2022)
Molecular Cell 82 (14): 2714-2726.e4DOI: 10.1016/j.molcel.2022.05.003
Reprogramming TracrRNAs for Multiplexed RNA Detection
Jiao C, Beisel CL (2022)
Methods in Molecular Biology 2518: 217-235DOI: 10.1007/978-1-0716-2421-0_13
A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13
Vialetto E, Yu Y, Collins SP, Wandera KG, Barquist L, Beisel CL (2022)
Cell Host & Microbe 3128 (22): 00273-6DOI: 10.1016/j.chom.2022.05.013
Beneficial commensal bacteria promote Drosophila growth by downregulating the expression of peptidoglycan recognition proteins
Gallo M, Vento JM, Joncour P, Quagliariello A, Maritan E, Silva-Soares NF, Battistolli M, Beisel CL, Martino ME (2022)
iScience 25 (6): 104357DOI: 10.1016/j.isci.2022.104357
Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems
Wandera KG, Beisel CL (2022)
Methods in Molecular Biology 2404: 135-153DOI: 10.1007/978-1-0716-1851-6_7
Differentially Optimized Cell-Free Buffer Enables Robust Expression from Unprotected Linear DNA in Exonuclease-Deficient Extracts
Batista AC, Levrier A, Soudier P, Voyvodic PL, Achmedov T, Reif-Trauttmansdorff T, DeVisch A, Cohen-Gonsaud M, Faulon JL, Beisel CL, Bonnet J, Kushwaha M (2022)
ACS Synthetic Biology 11 (2): 732-746DOI: 10.1021/acssynbio.1c00448
A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes
Wimmer F, Englert F, Beisel CL (2022)
Methods in Molecular Biology 2433: 391-411DOI: 10.1007/978-1-0716-1998-8_24
Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons
Wimmer F, Mougiakos I, Englert F, Beisel CL (2022)
Molecular Cell 82 (6): 1210-1224.e6DOI: 10.1016/j.molcel.2022.01.026
Spacer prioritization in CRISPR-Cas9 immunity is enabled by the leader RNA
Liao C, Sharma S, Svensson SL, Kibe A, Weinberg Z, Alkhnbashi OS, Bischler T, Backofen R, Caliskan N, Sharma CM, Beisel CL (2022)
Nature Microbiology 7 (4): 530-541DOI: 10.1038/s41564-022-01074-3